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A Survey of Numerical Cubature over Triangles*

J. N. Lyness and Ronald Cools

Abstract

This survey collects together theoretical results in the area of numerical cubature
over triangles and is a vehicle for a current bibliography. We treat first the theory
relating to regular integrands and then the corresponding theory for singular integrands
with emphasis on the “full corner singularity.” Within these two sections we treat
successively approaches based on transforming the triangle into a square, formulas based
on polynomial moment fitting, and extrapolation techniques. Within each category we
quote key theoretical results without proof, and relate other results and references to
these. Nearly all the references we have found may be readily placed in one of these
categories. This survey is theoretical in character and does not include recent work in
adaptive and automatic integration.

1991 Mathematics Subject Classification: Primary 41A55, 41A63; Secondary 65B05, 65B15,
65D32.

1 Introduction

1.1 A Historical Perspective

The numerical calculation of areas has a history that precedes the history of the infinitesimal
calculus by several millenia. But the arrival of an analytic method in the late eighteenth
century led to a surge in both theoretical and numerical methods for quadrature. The de-
velopment of numerical methods for cubature (multidimensional integration) came perhaps
a century and a half later, following closely the development of computing machines capa-
ble of handling these more intensive numerical calculations. Not until the early 1970s did
textbooks begin to address cubature.

Undoubtedly, in the early days, cubature was treated as an iterative application of one-
dimensional quadrature. But it was quickly realized that it was often more cost-effective
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to treat cubature over standard regions as a single entity. Two factors inhibiting the devel-
opment of the theory were the large number of standard regions, each demanding special
attention, and the cost of experimentation.

The triangle is simply one of these standard regions; the development of dedicated
cubature methods is comparatively recent. Qur earliest reference is to Radon’s seven-point
rule of polynomial degree 5 [Rad48]. A version of this rule is applicable to any planar region.
The theory of integration over a triangle has lagged behind the theory for the square, but
it has recently been spurred by two particular applications. One is the application to
adaptive cubature, where triangles seem to be replacing squares as the basic module. The
other application is to the finite element; here integrands with specified singularities may
be involved.

The century and a half of development of one-dimensional quadrature has left us with a
rich legacy in terms of variety of methods. We have rules involving derivative values, rules
with all sorts of weighting functions, equally spaced rules, copy rules, minimum norm rules,
equal weight rules, and rules of specified trigonometric degree. There are methods for using
the same sets of function values to evaluate sets of integral transforms. We have techniques
involving subtracting out singularities, and the method of steepest descent in the complex
plane. And we have a wealth of expressions for the discretization error. For an overview of
all these, we suggest [DR&4].

Compared with all this, the available theory for the triangle is sparse indeed.
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1.2 Outline and Notation

Throughout this paper, £ denotes a specified triangle, and I(€2)[f] denotes the integral of
an integrand function f(z,y) over this triangle. We refer to

QLI =Y wif(xi,yi), wi € R, (25,5:) € R? (1.1)
=1

as a cubature rule, usually some sort of approximation to I(€)[f]. This rule involves v =
v(Q) weights and points. It is of polynomial degree d = d(Q) for Q if Q[f] = I(Q)[f]
whenever f(z,y) is a polynomial of degree d or less. We do not discuss cubature rules
requiring derivatives.

In Section 2.1 we introduce the Duffy transformation. This reduces the problem to that
of cubature over a square. In Section 3.1 the same transformation is applied to advantage
in situations where the integrand has certain singularities.

Section 2.2 is devoted to cubature rules of the form (1.1). Special attention is paid to
different approaches to the construction of such rules and to the number of function values



v(Q) required to obtain polynomial degree d(Q). Because this theory is an immediate
generalization of one-dimensional Gaussian quadrature, we refer to these rules generically
as GQ. In Section 3.2, the few analogous results known to us involving weight functions are
given.

In Section 2.3 we outline the theory of cubature using extrapolation (EQ). It appears
that the result of extrapolation is yet another cubature rule, obtained in a somewhat round-
about way. This rule turns out to have nontrivial polynomial degree, but is marginally less
cost-effective in terms of polynomial degree than the GQ rules. In Section 3.3, extrapola-
tion cubature is discussed in the context of integrand functions having certain algebraic or
logarithmic singularities on the edge or at the vertex. This approach to these cubatures has
significant advantages in terms of generality and convenience over the corresponding GQ.

In much of the theory, the results are independent of the actual triangle used for the
calculation. This is especially true of the polynomial degree of a formula. Any nonsingular
linear transformation takes one triangle into another and transforms a cubature formula in
an obvious manner. It appears that the polynomial degree of the cubature formula is re-
tained. (But this happens only occasionally when nontrivial weight functions are involved.)
Different authors have found it convenient to use several different triangles, some of which
are listed below. Originally,

N ={(z,y):2>0,y>0,2+y <1}, (1.2)

which we refer to as the standard triangle, was used almost exclusively. Parts of the theory
will involve the unit square,

O =101 (1.3)
and what we term the complementary triangle,

N ={(z,y):a<1,y<1,2+y>1} (1.4)

Clearly, N\ U] = [] . More recent work has been based on the equilateral triangle

d={(z,y):x<=,V3y—a<1, —By—a<1}, (1.5)

N | —

which has vertices at (1/2,+1/3/2) and (—1,0). Finally, we have used the triangle

A ={(@,y):0<y<a <1} (1.6)

for the Duffy transformation below, simply because this makes the transformation simpler
to follow. A consequence of the fact that different authors prefer different triangles is that
the same cubature formula can appear in several forms in the literature.



2 A Regular Integrand Function

2.1 Transformation into a Square

A natural approach to integration over a triangle is to transform the triangle | into the
square [ ] as follows:

/01 {/: f(ac,y)dy} dz = /01 96/01 Sz, zt)dtdz.

In the days before the formal theory for multidimensional integration, one supposed that
a scientist would do this naturally, partly because, in the early days, numerical integration
over a square was more familiar. This transformation is now known as the Duffy transfor-
mation [Duf82].

To integrate over the square, the scientist might use the product of two one-dimensional
rules, for example,

¢ 1
ZTlg(tl) = / g(t)dt‘|‘ Eg 5 where Eg =0 Vg € ’Pd”
=1 0

and

Ny 1
Zng(wj) = / zg(z)de + E, , where E, =0 Vg € Py,.
=1 0

Thus, he would calculate an approximation of the form

ng Ng

QU1 =YD TiX;f(xj, tix;).

=1 j5=1

A short calculation shows that this is of polynomial degree d = min(d;,d,). While, in
principle, any pair of one-dimensional quadrature rules can be used, an erudite scientist
might choose the Gauss-Legendre rule and the appropriate Gauss-Jacobi rule. The weights
and abscissas for these Gaussian rules are often available for moderate to high values of
n (see, e.g., [SS66]). If the scientist also chose n; = n,, he would recover the well-known

Stroud Conical Product rule [Str71], Q(Cfl])j, for which the number of points is

(d+1)°

v =l = for all odd d. (2.1)

We note that this is a somewhat indirect way to obtain a rule for a triangle. The rule is

not symmetric, and there are three distinct Stroud Conical Product rules for each degree
d, depending on which vertex is the preferred one.
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2.2 Polynomial Moment Fitting

Nearly all the theory of numerical integration over a triangle is related in one way or another
to polynomial approximation. In the cubature rule (1.1), the points (2, y;) and weights w;
are conventionally chosen so that the formula is exact for all polynomials up to a certain
degree d. If the polynomials py, ps,. .., pay form a basis for the space P3 of all polynomials
in two variables of degree at most d, then a cubature formula of degree d is determined by
a system of polynomial equations, known as the moment equations,

Qpl=I(M)[p], i=1,2,....,M = dim P? = %(dQ + 3d + 2). (2.2)

Here the moments, I(Q)[pi], are known, and the unknowns are z;,y;, w;;¢ = 1,2,...,v,
which occur when the left-hand side is replaced by the expression in (1.1). Since a cubature
formula of a specified polynomial degree for a specified triangle {2 can be scaled onto any
other triangle with preservation of its degree, one may choose any convenient triangle Q for
this calculation.

One can distinguish between two approaches to construct cubature formulas:

1. one may proceed directly to solve this system of nonlinear equations (most of this
section describes this); or

2. one can search for polynomials that vanish at the points of the formula.

This second approach has been very successful in (one-dimensional) quadrature. In cuba-
ture, it has turned out to be difficult for the square, and significantly more difficult for the
triangle. Radon constructed the first cubature formula for a triangle using the common
zeros of three orthogonal polynomials. Schmid [Sch83] used the theory of real polynomial
ideals to construct a minimal formula of degree 4 with positive weights. To our knowledge,
only very few rules for the triangle have been obtained by using orthogonal polynomials or
polynomial ideals. However, this approach did lead to the following important result.

Theorem 2.1 The number of points v(Q)) in a cubature formula Q of degree d for a triangle
satisfies v(Q) > vi(d), where

vr(d) = % if diseven, (2.3)
vp(dy = U L LG s odd. (2.4)

The first bound can be traced back to the same paper by Radon that contains the first
cubature formula for a triangle. In its general form it was probably first published by Stroud
in [Str60]. The second bound was obtained by Méller for d < 12 [M6176] in 1976. This
result was generalized by Rasputin in 1983 [Ras83b]. The same bound had been established
for centrally symmetric regions, such as a square, in 1973 [Mo&l73]. It is revealing that
it took ten years to modify the theory for a triangle with constant weight function and
another ten years for a triangle with a special weight function (see Section 3.2). It is also



Table 1: Known minimal formulas, their properties, and original discoverers

d | vi(d) | Quality | Reference ‘

2 3 | PL3) | [HSH6]
PI(3) | [Hil77]
31 1 | M [S56]
PI(2) | [Hil77]
4 6 PI [CowT3]
PI [Schs3]
51 7 | Pl [Radds]
6| 10 | PO [Ras83al
7| 12 | PI [Gat88, Bec87]
8| 15 | PO [CHST]

known that a formula of even degree that attains this lower bound has all weights positive
[Mys68, Str7l, CH88b]. This property is, however, not guaranteed for formulas of odd
degree.

In Table 1 we give an overview of the known minimal formulas. In the third column, P
indicates that no negative weights occur and I indicates that there are no abscissas strictly
outside the triangle. N and O are the negations of P and I, respectively. The number of
distinct formulas (if more than one) is indicated in parentheses.

We now return to the direct approach, item 1 above. This has been fruitful, and an
arsenal of cubature formulas now exists. At first, however, progress was painfully slow. In
retrospect, it turns out that progress has been governed by the willingness of researchers
to appreciate the significance of symmetry and structure and to realize that the detailed
application of these is quite different for the triangle than it is for the square.

The term symmetry will be familiar to readers. By the symmetry group of a triangle,
we mean the group of six linear transformations which take that specific triangle into itself.
Any such group is isomorphic with the permutation group S5. For the equilateral triangle
<1, this symmetry group is termed the dihedral group Ds. The term structure is less precise.
In cubature it refers to conditions applied to the rule. These take the form of constraints
on the solutions of the moment equations. For example, if we look ahead to (2.7), once
numerical values for Ko, K1, and K3 have been assigned, the rule has been structured. One
may then try to solve the moment equations. It is common experience among those who
attempt to solve systems like (2.2) that exploiting the symmetry of the region and imposing
a simple structure to the rule form has a simplifing effect on their task. This simplification
is a consequence of Sobolev’s theorem [Sob62].

Theorem 2.2 Let the integral 1(2) and a cubature formula Q be invariant under the trans-
formations of a group G. The cubature formula Q has polynomial degree d if Q[f] = 1(Q)[f]
whenever f(z,y) is a polynomial of degree d or less that is invariant with respect to G.



The larger the symmetry group G, the lower is the dimension of the space of all G-invariant
polynomials of degree at most d and, consequently, the lower is the number of nonlinear
equations that determine a G-invariant cubature formula.

It is convenient and appropriate to describe these formulas in a partly historic perspec-

tive.

la.

1b.

If no structure is imposed on the cubature formula, one can use the monomials
vy, 0<itj<d,

as a basis of 773. The number of moment equations in this case is then %(d2 +3d +2).
We have no evidence that any serious attempt was ever made to solve this set of
equations directly.

In the 1960s, significant progress was made in cubature for the square by exploiting
its symmetry. In particular, by imposing a rule structure symmetric under coordi-
nate interchange, one could reduce the number of independent moment equations. It
appeared that for the standard triangle [\ , a significant reduction was available if
one structured the rule to be invariant under coordinate interchange, and fitted only
monomials 2%y” with o > 8 > 0. The number of independent moment equations is
then L%(dz +4d +4)]. Formulas of degrees 2, 3, 4, 5, and 6 with this symmetry exist
with their number of points equal to the lower bound of Theorem 2.1.

In retrospect, one can see that Sobolev’s theorem is being applied, in this case with G
being a group of order 2, whose elements are the unit and a reflection about one median.
Later (see 1d below), it was applied using as G the full dihedral group Ds. Later still (see 1c
below), when the overall theory had become more familiar, the same theorem was applied

using another subgroup of Ds.

lc.

1d.

In the late 1980s, Gatermann [Gat88] and Cools and Haegemans [CH87] searched
for minimal formulas for degrees larger than 5, using the subgroup of D3 generated
by the rotations. This approach led to minimal formulas of degree 7 and 8. It was
later established that no formula of degree 6 with 10 points exists with this symmetry
[Gat90]. For this symmetry, a basis in polar coordinates using the equilateral triangle
< is
(r3) (1% cos 30) (r®sin 30)' , 0 <2+ 3(j + 1) <d,l=0o0r 1,
and the number of independent moment equations is |$(d? + 3d 4 6)].

The full symmetry of a triangle was systematically exploited for the first time in 1975
by Lyness and Jespersen [LJ75], who introduced the equilateral triangle <] for this
purpose. Since then, this choice has been popular. One of the advantages of <] is
that it is straightforward to write down a basis for the Ds-invariant polynomials of
degree d and less. This is

(r3)i(r3cos 30)’ , 0 < 2i4 35 < d,



and the number of independent moment equations is
1
E(d) = {E(dQ + 6d + 12)J : (2.5)

In the case of the triangle, then, the larger the symmetry group, the smaller the number
of independent moment equations F(d). We now describe in detail how this theory is
applied. We shall employ the equilateral triangle <], denote its area by A, and work in
polar coordinates. We shall apply the convention that (r,6) and (—r,8 + 7) refer to the
same point. Since Q[f] is to have this symmetry, it follows that, if any point (7, a) appears
in Q[f], so does any point of the form (r, £a + 2%), and all distinct points of this set carry
the same weight. Such a set of points is sometimes called an orbit. A moment’s reflection
will convince the reader that no orbit has more than six elements; and a basic cubature

rule, one that contains only one orbit, can be expressed in the form

Q(r,a)[f]:%i{f(r,a—l—%‘j)—k]‘(r,—a—l—%‘j)}, (2.6)

i=1

where negative values of r are allowed, a@ € [0,7/6), and A is the area of the triangle.
Moreover, any rule Q[f] is expressible as a linear combination of these basic rules.

Three geometrically distinct types of orbit occur. The first (type-0), with » = 0, involves
only the centroid. There can be at most one of these in Q[f]. The type-1 orbits have a = 0
and positive or negative assignments of r. These have precisely three distinct points all
lying on a median of the triangle. All other orbits are termed type-2 orbits and include six
distinct points, none of which are on any median.

Let K; be the number of orbits of type ¢ in a Ds-invariant cubature formula. These
nonnegative integers specify the structure of the rule and are known as structure parameters.
A Ds-invariant cubature formula must have the following form:

Ky Ki+K,
QLf] = Kowo f(0,0) + > wiQ(ri,0)[f1+ > wiQ(ri, c)[f], (2.7)
=1 i=K1+1

where Q(r, @)[f] is defined in (2.6) above. The number of points required by this rule is

Z/(Q) = Ko+ 3Ky + 6Ks. (28)

The process of solving sets of nonlinear equations can be very involved. Some regard it
as more of an art than a science. There is a set of inequalities, known as the consistency
conditions, that are heuristic but extraordinarily useful. They are based on the inaccurate
premise that one may obtain a solution to a set of £ equations in N unknowns only if
E>N. This premise is applied to the set of E(d) independent moment equations and to
any conveniently determined subset of these equations that does not involve some of the

unknowns. Some consistency conditions for cubature formula (2.7) have been determined
in [LJ75]. These are

Ko+ 2K+ 3Ky > E(d) R



2K, + 3Ky > E(d) -1, (29)
3K, > E(d—6),
I(O S 17

where F(d) is given by (2.5).

A refreshingly well defined problem is that of finding an optimal cubature formula whose
structure satisfies these consistency conditions. It is straightforward to show that, when ¢
given by (2.7) has polynomial degree d, then

UQ) > voor (d) = E(d? L 3d+ z)J . (2.10)

In principle, one could use an integer programming routine to determine the set of
nonnegative I; that, for a given degree d, satisfies (2.9) and minimizes v(@)) given by (2.8).
In practice, this particular set is so simple that it can almost be done by inspection. Then
one has to solve the set of nonlinear equations. If no solution can be found, one determines
the next best solution of the minimization problem, and iterates. In the end, one is brought
to a stop when the system becomes too large for one’s computing aids. This search was
initiated by Lyness and Jespersen [LJ75], who went as far as d = 11; it was continued up
to d = 20 by Dunavant [Dun85]. To our knowledge, apart from conical product rules, no
rules of higher degree have been determined explicitly.

In the foregoing account we have implicitly assumed that the search has been for all
real solutions to the moment equations. As in the theory of one-dimensional quadrature,
various additional criteria have been applied in the construction of cubature formulas. For
example, a good formula (also known as a PI formula in [LJ75]) is one all of whose weights
are positive and all points inside the region of integration. Restricting the search to formulas
with all weights positive has largely been discontinued. Instead, all rules are found, and,
when of interest, the value of a condition number

o(Q) = Zyjlwil/iwi (2.11)

=1

is reported. Rules having some points outside the triangle are also reported. A different
cost criterion, the cytolic point count (conventionally termed 7), is occasionally used. Its
justification is set in a context in which a large triangular region is subdivided into m? small
triangular regions of equal area, and the cubature rule is applied to each smaller triangle.
This reflects the average number of points per cell by discounting appropriately the corner
and edge point count. These variations have added little to the theory.

On the other hand, Silvester [Sil70], by means of a somewhat elegant use of homogeneous
coordinates, introduced the theory necessary to construct analogues of the open and the
closed type of one-dimensional Newton-Cotes rules. The closed type uses all points on [\
of the form (j/m,k/m) except the three vertices when m is even, is of degree d = m, and
has D3 symmetry. Like the one-dimensional Newton-Cotes rules, the weights are rationals,
and the value of o, ((2.11) above), increases indefinitely with increasing m. For these the



point count is

vee(d) = %(d F1)(d+2) - ;(1 +(=1)b). (2.12)

FEmbedded formulas are pairs (or longer sequences) of cubature formulas where some
or all of the points of a less precise formula are also used by a more precise formula. In
contrast with the one-dimensional situation, where the gap between the degree of a Gaussian
quadrature formula and its Kronrod extension is large, in two dimensions one can construct
embedded formulas of successive degrees.

For constructing such embedded formulas, the approach using orthogonal polynomi-
als has been more successful. Although published results are scarce, the highest-degree
embedded sequences available have been constructed by using this approach.

Theorem 2.3 [CHY0] Let a set of v distinct points support two distinct cubature formulas
of respective degrees 2k — 1 and 2k + m,m € IN, in such a way that, for every point, the
two assigned weights are different from each other. Then v > (k + 1)%.

The lower bound of Theorem 2.3 is known to be sharp for pairs of degrees (1,3) and (5,7).
The confirming rules appeared in references [GM78, CH88a]. Simpler, but less effective,
embedded formulas are obtained naturally by extrapolation (which is treated in the following
section).

Nearly all the cubature formulas for the triangle that were known before 1971 are col-
lected in Stroud’s standard work on multiple integration [Str71]. A list of more recent
references to available rules, together with information about the quality of these rules, has
been compiled by Cools and Rabinowitz [CR93].
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2.3 Extrapolation
In 1927, Richardson [Ric27] proposed his deferred approach to the limit. Possibly the first

application of this in one-dimensional quadrature became known as Romberg integration
[Romb5]. In the mid-1960s, extrapolation was applied by several authors to integration
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over a square. In the 1970s the techniques used to construct this theory were modified to
provide corresponding results for the triangle. We describe first the theory for the square
and then the significantly more difficult theory for the triangle.

We define a one-point rule

Qa,slf] = fla. B). (2.13)

The m?-copy version of this rule for integration over the square [ ]

QU = miﬂi:ﬂi (‘Ha k+ﬂ) (2.14)

m
Using (2.13), we may express a general cubature formula (1.1) as
N1=)_wiQa,slf]. (2.15)
=1
Q is centrally symmetric for the square [ ] if it may be re-expressed in the form
m
Z (Qaj,ﬁj 14+ Qia,1-5 [f]) .

J=1

The m? copy of (2.15) is defined as
QU = Y w0 1) (2.16)
=1

This rule is an approximation to I( [ ] )[f] obtained by subdividing the square [ ] into
m? identical squares, each of side 1/m, and applying a properly scaled version of Q[f] to
each. If () is centrally symmetric, then Q(m)( [ ] )[f] is also centrally symmetric.

For regular f(z,y), extrapolation is based on the two-dimensional version of the Fuler-
Maclaurin expansion. When feCP([] ), p € IN, the almost self-evident extension of the
standard one-dimensional expansion may be expressed in the form

QO - n D )=y P

g=1

O(m™7r). (2.17)
The coefficients in this expansion have the form

BAD@iN= Y ewnl@ [ SO eydedy,  (218)
q1-|—q>20=q D
9 2

where ¢4, 4,(Q) is obtained by applying the rule () to

By, () By, (y)
a1 !qs!

11



B,(t) being the Bernoulli polynomial of degree ¢ in ¢. Integral representations for the
remainder term of the expansion (2.17) have been given in [LM70].

These coefficients have several properties that are useful in constructing individual ex-
trapolation procedures and in assessing them.

1. If ¢) is centrally symmetric, then

B,([0:Q;f)=0 Vodd g, (2.19)

and so the Euler-Maclaurin expansion (2.17) is an even expansion.

2. If ¢ is of polynomial degree d, then
By([1:@Q:/)=0,¢=1,2,....d. (2.20)

3. If f(«,y)is a polynomial of degree d( f), then the asymptotic expansion (2.17) reduces
to a finite sum, and

By([J:@Q:f)=0 Vq>d(f). (2.21)

There are curiosities in the theory. For example, when f(z,y) is periodic with unit period,
one finds that all coefficients B, are zero, but Q™[ f]— I[f] need not be zero. The vanishing
of the remainder term is a stronger result than, and is not implied by, the vanishing of all
individual terms.

Romberg integration over the square is conventionally based on the product trapezoidal
rule

and occasionally on the mid-square rule Q§772)1/2( C1)If]-

The extrapolation process will be familiar to the reader. The numerical result, conven-
tionally denoted by T}, is a linear combination of p + 1 distinct approximations to I[f],
namely, Q(m’)[f] with ¢« = k,k+ 1,...,k + p. This combination is constructed so that the
first p nonzero terms on the right of (2.17) disappear from the corresponding expansion of
Tip — I[f]. When f(z,y) is a polynomial of degree p, the result in item 3 assures us that
other terms also disappear. In fact, the remainder term vanishes too, leaving the result that
T} is exact, and so the implied rule is of polynomial degree p. More familiar is the case
of an even expansion when the extrapolation is designed to recognize only even terms, and
the result T} , is of polynomial degree 2p + 1.

We refer to these generalizations of Romberg integration collectively as extrapolation
quadrature (EQ). The reader should note that there are many parameters to be set. These
include the rule ) to be used, the mesh ratio sequence m;, and, of course, for an individual
result, the values of k£ and p.

The theory given above for the square is extraordinarily simple to establish. Only
integral representations for the remainder term pose any serious difficulty at all. In con-
trast, development of the corresponding theory for the standard triangle [\ has not been
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straightforward. When one subdivides the standard triangle [\ into m? equal triangles
using lines parallel to 2 = 0,y = 0 and @ + y = 0, one finds m(m + 1)/2 identical triangles
oriented in the same way as [\ together with m(m — 1)/2 identical triangles oriented in
the same way as \] . If one proceeds on a cell-by-cell basis, it is clear how to assign points
to the first set of triangles, but not the second set. In [Lyn78] this incongruity was resolved
by introducing a rule pair. The resulting theory is complicated.

Definition 2.1 A rule pair (Q( [\ ),Q( \] )) comprises two cubature rule operators

ORI = 3 wif(ai Bi), and

=1

QU< 1A iw@,@) (2.22)

where S wi+ Y7, W = 1.

These are two quite independent rules, pertaining to the two different triangles. To construct
the m-copy, one requires both rules. Then we have the following definition.

Definition 2.2

E
+

k3

QU = Qszlemi]f< ) AR

QI

+ memZ mZ]f( ﬁ*’“). (2.23)

m

Note that when m = 1, QU ( \_ )[f] may be zero, but in an extrapolation technique, this
zero value may be used as a meaningful result.

When feCP(\ ), p € IN, the Euler-Maclaurin expansion for the triangle may be
written in the form

QU - 11 = 3 BB ) oy, (2.24)

q
g=1 m

This was established in [Lyn78]. The coefficients B,( [\ ;@; f) have a more complicated
structure than those for the square in (2.18). Clearly

By(IN 1Q5 )= Y wiBy( I\ 1 Qo f +sz (N 5@5,5:0)-
=1
It may be shown that

BN 5Qas f) = D, Bugl\ ;Qusf),

g1+ 92 =49
q; >0
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where, so long as a, € (0,1) and a4+ § # 1,

B B 1 gu
By (N 5Qas f) = AC) qfiéj!a 1) N f(ovqfl)(x, 1—2)dx
_ By (@)Bg,(8) [t o™

q1!q2! o Oxn

FOe= (e 0)da.

Here {2} means the fractional part of . Moreover, when ) includes abscissas on the edges
and even outside its triangle, the expansion (2.24) remains valid, and the coefficients may
be obtained from those given above by using analytic continuation.

Clearly an associated rule for the square is

QI ) =Q(N )+Q(N )
This rule Q( [] ) is centrally symmetric if v = 7, w; = W; and a; + @ = 3; + 3, = 1.
Results analogous to (2.19), (2.20), and (2.21) hold, namely,

1. if Q([] ) is centrally symmetric, then B,( [\ ;@Q;f) =0 V odd g¢;

2. if both QM( ]\ ) and QM( ] ) have polynomial degree d for their respective trian-
gles, then B,(\ :Q;f)=0,¢=1,2,...,d; and

3. if f(z,y)is a polynomial of degree d( f), then the asymptotic expansion (2.24) reduces
to a finite sum, and

By(I\ 5@ /) =0 Vg>d(f)+1. (2.25)

These results were obtained earlier using an entirely different approach [LP73] involving
product integration. This equally complicated theory was generalized in 1979 by de Doncker
[dD79]. Let p be half an odd integer, feCP(\ ), p € IN and

1 wt+1/2 p—g+1/2

o= L' f<j—1/27k—1/2)‘
k=1

)
poo 1t 1t

Then B
QW =111+ . M—fj +0(m™").

q even
g<p
In any extrapolation procedure based on this expansion, one is allowed to employ only values
of u for which 2u is an odd integer. De Doncker has shown that when f is a polynomial
of degree d(f), then B, =0V ¢ > d(f). This means that an extrapolation procedure that
eliminates By, ¢ < d(f), leaves an exact result. This circumstance may be used to generate
rules of specified degree. Grundmann and Moller [GM78], in an independent approach,
established a set of rules of the form

Qi1 =" ar,; QU1 (2.26)

i=1

14



of degree 2t — 1. These rules are identical with rules obtained later by De Doncker us-
ing extrapolation. (For larger ¢, the rule (2.26) has unduly high condition number; see
(2.11) above. An alternative is to extrapolate using only a selection of the approximations
QU=YA[f]. This reduces the conditioning error at a cost in extra function values.) So far as
we are aware, this approach to integration over the triangle has not been developed further,
nor has the corresponding theory for squares.
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3 Specified Singularities

3.1 Transformation into a Square

The Duffy transformation, introduced in Section 2.1, may be used to advantage in the case
where the integrand function has a full corner singularity and a line singularity along the
opposite edge. In particular, for the triangle | , when the integrand is of the form

f(@,y) =y @ — (1 —2)ro(w, y)g(e,y),

where 7,(z,y) = (22 + 3/2)0/2 and g(z,y) is regular in the triangle of integration, one finds
readily that

/01 {/01’ f(x,y)dy} dr = /01 /01 gAML ) (1 = )y, (1, 0)g(, t)dtde.  (3.1)

Note that, while 7,(z, 2t) has a singularity at 2 = 0, this has been extracted, leaving the
innocuous function r,(1,¢) which is regular for all ¢. This integral may be approximated by
the product of a pair of Gauss-Jacobi formulas, just as described in Section 2.1.

This transformation is correct as written when r,(z, y) is replaced by any other function
homogeneous of degree p in the triangle of integration, as defined in Definition 3.1 below.

3.2 Polynomial Moment Fitting

In this section we discuss cubature rules with a nonconstant weight function for the triangle.
This weight function w(x,y) is given, and its moments are known, usually in analytic form.
The rule Q[ f] is of the same form as in preceding sections, but it is designed to approximate
the integral

1w y)f= [ [y . (3.2)

As before, when this approximation is exact for all polynomials of degree d or less, the rule

Q[f] is said to be of degree d.
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The major difference between this theory and the special case with unit weight function
is that, in general, one cannot transform the triangle into another of different shape and
retain both the nature of the singularity and the polynomial degree. What happens is
that the affine transformation alters the weight function too. When w(z,y) = 1, this is
no problem. But, in general, one finds a rule of the original polynomial degree for a new
triangle and a new weight function.

The shape of the triangle and the weight function are now important, and, for a fixed
type of weight function like 1/r, one needs a new rule for each differently shaped triangle.
For reasons unknown to us, only one triangle has been treated, this having sides in the
ratio v/5,1/5,2. One set of rules has a radial weight function 1/7, r being measured from
the mid-point of the shorter side. The other is similar, except that r is now measured from
the vertex opposite the shorter side. Only results for low degrees (1, 2, 3, 5, and 7) are
published [CL78, Hae93, PFB&1]. Most of them were constructed by solving the nonlinear
equations that define them and imposing symmetry with respect to one median (the only
symmetry available). The highest-degree results were obtained using the common zeros of
three orthogonal polynomials, a variant of the method used by Radon.

The narrowness of the scope for possible application of these numerical results is mani-
fest. If one has an equilateral triangle, or a right-angled triangle, these weights and abscissas
are useless. They are of value for triangles of one specified shape only. Unfortunately, the
authors do not make this clear. The casual reader could easily retain the impression that
these results are of wider application.

Lyness and Gatteschi [LG82] have treated a variant problem. They use a general triangle
and an integrand function w(x,y)f(z,y) closely related to that in the preceding subsection.
In terms of the triangle ] , the weight function is

w(z,y) =y (@ —y)*(1—2)r’, (3.3)

and the rest of the integrand function is of the form f(x,y) = h(r)g(2,y). The cubature
rule is of joint polynomial degree d if it is exact for all functions h(r)g(x,y), where g and
h are polynomials of degree v and 4, respectively, and v + § < d. The authors provide the
specifications for a product rule of the same type as in the preceding subsection. However,
one of the product rule components is a one-dimensional quasi-degree quadrature rule.

The only theoretical results known to us about formulas for triangles with weight func-
tion are the following. First, the lower bound for the number of points presented in Theorem
2.1 is valid for even degrees whenever the integral has a positive weight function. Recently,
Berens and Schmid [BS92] proved that Theorem 2.1 is valid for the integral

Ilg] = /01 /Ox y Mo —y) (1 — ) g(x,y)dyda (3.4)

for odd degrees also.
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3.3 Extrapolation

A powerful method of handling integration over a triangle of an integrand having certain
boundary singularities is by extrapolation. The results resemble closely corresponding re-
sults for integration over a square, and much of this theory may be established as a minor
corollary to the theory for the square.

The theory is based on homogeneous functions:

Definition 3.1 The function f(z,y) is homogeneous of degree v about the origin in a region

R if f(ka,ky) = k" f(x,y) for all k> 0 and (z,y) € R\ 0.

This is in fact an n-dimensional definition. In one dimension the only homogeneous functions
of degree v are of the form kz”. In higher dimensions more sophisticated functions may
be homogeneous. Two-dimensional examples include 17 = (22 + y2)/2, 27, (x — 3y + )7,
and (2% + 63/5)7/5 which are homogeneous of degree v, while any function of y/z, such
as = arctan(y/x), is of degree zero. The singularities that can be handled through
extrapolation are closely related to homogeneous functions.

Two early and fundamental papers [LM80, Sid83] establish error functional expansions

for singular integrals over triangles. The basic result in [LM80] is as follows.

Theorem 3.1 Let f.(z,y) be homogeneous of degree v about the origin in the first quadrant
x>0,y >0 and be C?, p € IN, there except possibly at the origin. Then

QU A~ I(A)f] =
Comnl N i@ f)Inm) | 5= BN 3000 L omry, (35

m2+y

A2+w( A% fw)

m2+y

_I_

s=1

where Cy4y = 0 unless vy € IN.

The identical expansion had been previously established for the square. The proof in the
case of the square is not easy. However, once established for the square, it can be established
for the triangle almost trivially. One notes that [] = [\ U N] . Then, since

QUI(N )+ () =" (),

any expansion for [\ is simply the difference of the corresponding expansion for [ ] and
for ] . However, f,(z,y) is regular within \] , and so QU( )[f+] has an expansion
of the same type as (2.24). Taking this difference then simply alters the coefficients in some
of the existing terms and does not introduce any additional terms.

Detailed expressions for the coefficients in the case of the square are given in [Lyn76].
The coefficients in (3.5) have the following properties:

1. if both Q(l)( I\ ) has polynomial degree d for [\ ~and ) has polynomial degree d
for [ ] , then
Cs = Bs; =0 for all odd s; (3.6)
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2. if @) is of polynomial degree d, then

Cs=B;,=0 for s=1,2,...,d. (3.7)

The result as stated applies only to f,(z,y), which is homogeneous of degree . A natural
extension to

F(z,y) = fy(z,y)9(z.y),

where g is regularin [] , follows by expanding ¢(z, y) as a Taylor series about the origin and
noting that each term f,(z, 1)g")(0,0)2"y* /r!s! is itself homogeneous of degree v + 7 + s,
and so the theorem applies also to this term in its own right. Taking care to handle the
remainder term properly, we are led to an expansion of the form

A ; C Inm B
(m) _ ~ Z 24+ Z 24+ s
QTN LF] = HA)F] =~ = i T = e = ms

Sidi’s result for F(z,y) = 2" Inz g(z,y) [Sid83] has the same form as this.

A standard result from classical analysis allows differentiation of any asymptotic expan-
sion with respect to an incidental parameter so long as the coefficients are differentiable.
The proof (not given here) of Theorem 3.1 above indicates that the coefficients are analytic
functions of v in any region not including integer .

Setting ®(z) = aa—wfw(x,y) = fy(z,y)In f(z,y), we find
dA 0 Agy 1
QU o] - 1(a)fe)x A/ O1_ Aro i

s=1

0B,/0

where Aj4 . and By are the coefficients in (3.5). In the case that v € 7, a serious calculation
is required. This yields an expansion of the same form as one would have obtained if one
had ignored the fact that the coefficients are discontinuous. This effect is to include in (3.8)
an additional term in (Inm)2m~G+),

Several generalizations of this result extend or alter the singularity structure of the
integrand in a way that is quite infeasible for Gaussian quadrature. For example, let

O(z,y) = (filz,y) + folz,y) + fa(@,9))9(2, ),

where f; and f5 are homogeneous of degree 1 and 72 about the origin and f5 is homogeneous
of degree 3 about another vertex. Then the expansion for Q( [\ )[®] — I(A)[®]is simply
a concatenation of three expansions, each having the same form. The justification for
concatenating the first two is obvious. We have to appeal to the Darboux theorem to
establish the theoretical basis for including the third; see [LMS80].

Another generalisation is established in [Lyn92]. One may apply the same expansion to
any differently shaped triangle so long as it has the same singular behavior at the vertex.
The point hereis that an affine transformation, besides transforming the triangle, transforms
the singularity. In the case of GQ, this means that one must start anew to calculate a rule.
However, a singularity of homogeneous degree 7 is transformed into another of the same
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degree; and if the technique depends only on this degree, then it is invariant under the
transformation. We consider this to be perhaps the most important attribute of EQ.

Recently, in the case of the square, an expansion has been developed for the full corner
singularity [LdD93, VH93]

F(z,y) = 2 y" f-(z,9)g9(z, y).

It is beyond the scope of this article to pursue this further. The situation seems to be that
for many algebraic or logarithmic singularities that occur at a vertex or along a side, an
extrapolation expansion exists.
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4 Concluding Remarks

The prevailing situation for regular integrands seems to be qualitatively different from that
for singular integrands.

For regular integrands, so far as rules of specified polynomial degree are concerned,
recent progress has been less than spectacular. Fifty years ago, what are now called conical
product rules were available, allowing a result of polynomial degree d based on (d + 1)?/4
function values. Present theory reveals that the minimal formulas require more than half
this number; these formulas are available only up to d = 8. The intermediate D3 formulas,
using approximately (d + 1)?/6, are available up to d = 20. The general development of
extrapolation quadrature (a set of methods based on Richardson’s deferred approach to the
limit) has been slow. The theory is complicated. Many variant and potentially interesting
formulas exist; but so far as polynomial degree is concerned, the number of points required
increases at best like d>/48.

For singular integrands, the situation is not the same. Gaussian rules of specified poly-
nomial degree are difficult to construct, and very few are available in the literature. Com-
pounding this scarcity is the circumstance that with the same weighting function, a different
rule is required for each differently shaped triangle. On the other hand, progress on extrap-
olation quadrature for singular integrands has been significant and a wide class of algebraic
and logarithmic singularities is now within the reach of this theory. Moreover, for these,
while possibly expensive, the integration can be carried out effectively in an iterative man-
ner without the need for tables of weights and abscissas. The theory is to a significant
extent independent of the shape of the triangle.

However, different parts of the theory are connected and may be useful in a single ap-
plication. For example, suppose one requires a Gaussian formula for an integrand function
having an extensive but known singularity structure of the type encountered in Section 3.3.
To construct any Gaussian formula, one needs accurate numerical values of the moments.

19



These might be determined by using extrapolation based on expansions of Section 3.3, using
for @) one of the minimal formulas of Section 2.2. In this context, one might bear in mind
that the expansions of Section 3.3 require, in their proof, the expansions of Section 2.3. The
reader may find the description above somewhat artificial and self-serving. However, calcu-
lations of this general nature are habitually used to construct special finite elements. Thus,
all four principal parts of the theory may be said to have contributed to this application in
a cooperative manner.

The ever-present problem of constructing minimal formulas remains, and we are con-
vinced that the more courageous and idealistic of us will continue to find the time to face
this daunting set of successively harder challenges. We are particularly gratified that these
formulas have found a role, albeit minor, in the related area of extrapolation quadrature.

The scope of this article has been limited to a review of the theory of integration over the
triangle. We refer the reader interested in the important application to adaptive quadra-
ture over the triangle to [HK85] and to [Kea92]. In [Lyn83], he will find a somewhat dated
but detailed practical guide to handling applications. In [Sid79] a general framework is
presented for all sorts of extrapolation, linear and nonlinear. The cogent problems of con-
vergence and stability in extrapolation are treated in [Sid90]. A useful list of references
about cubature over all standard regions has recently appeared in [CR93]. This provides a
welcome update to the reference list contained in the standard works on this topic, namely,
[Str71, Mys81]. Some very recent work in integration over curved surfaces and in the in-
tegration of expressions containing derivatives is not treated here. Our hope is that this
synopsis of the theory, with its linked bibliography, will be helpful to individuals interested
in further research in this and related areas.
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